Gate capacitance of deep submicron MOSFETs with high-K gate dielectrics

نویسنده

  • M. M. A. Hakim
چکیده

We study gate capacitance of deep submicron MOSFETs with high-K gate dielectrics. Schrödinger’s equation is solved by applying an open boundary condition at silicon-gate dielectric interface. Self-consistent numerical results reveal that accounting for wave function penetration into the gate dielectric causes the carrier distribution to be shifted closer to the gate dielectric. This effect increases with increasing gate voltage and also increases with the decreasing conduction band offset of the gate dielectric material with silicon. Gate capacitance calculated from conventional modeling is found to be independent of dielectric materials for a given equivalent oxide thickness (EOT). But our study shows that when wave function penetration into the gate dielectric is considered, gate capacitance for a given EOT increases with a decrease in the conduction band offset. Effects of substrate doping density on gate capacitance are found to be negligible when wave function penetration effects are incorporated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of gate-last and gate-first process on deep submicron inversion-mode InGaAs n-channel metal-oxide-semiconductor field effect transistors

Recently, encouraging progress has been made on surface-channel inversion-mode In-rich InGaAs NMOSFETs with superior drive current, high transconductance and minuscule gate leakage, using atomic layer deposited (ALD) high-k dielectrics. Although gate-last process is favorable for high-k/III–V integration, high-speed logic devices require a self-aligned gate-first process for reducing the parasi...

متن کامل

Effects of Neglecting Carrier Tunneling on Electrostatic Potential in Calculating Direct Tunneling Gate Current in Deep Submicron MOSFETs

We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error...

متن کامل

Inversion-mode InxGa1-xAs MOSFETs (x=0.53,0.65,0.75) with atomic-layer- deposited high-k dielectrics

High-performance inversion-type enhancement-mode (E-mode) nchannel MOSFETs on In-rich InGaAs using ALD Al2O3 as high-k gate dielectrics are demonstrated. The maximum drain current, peak transconductance, and the effective electron velocity of 1.0 A/mm, 0.43 S/mm and 1.0x10 cm/s at drain voltage of 2.0 V are achieved at 0.75-μm gate length devices. The device performance of In-rich InGaAs NMOSFE...

متن کامل

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

High-k dielectric materials are being considered as replacement for SiO2 as the gate dielectric while retaining the low equivalent oxide thickness (EOT) required next generation metal oxide semiconductor field effect transistors (MOSFETs). In this paper, we simulate the capacitance – voltage (C-V) of n-type MOSFET devices with different high-k dielectric insulator numerically. According to the ...

متن کامل

Gate current modeling of high-k stack nanoscale MOSFETs

A unified approach, particularly suitable for evaluation of high-k stack structures, is presented. This approach is based on fully selfconsistent solutions to the Schrödinger and Poisson equations. Various structures and materials of high-k stacks of interest have been examined and compared to access the reduction of gate current in these structures. The present approach is capable of modeling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002